
OpenSfM Documentation
Release 0.4.0

Mapillary

Apr 23, 2020

Contents

1 Building 1

2 Using 3

3 Dataset Structure 11

4 Reconstruction file format 13

5 Geometric Models 15

6 Camera Coordinate System and Conventions 19

7 Incremental reconstruction algorithm 25

8 Splitting a large dataset into smaller submodels 27

9 Reporting 31

10 Code Documentation 35

11 Python 2 and 3 compatibility 37

12 Indices and tables 39

i

ii

CHAPTER 1

Building

1.1 Download

OpenSfM code is available at Github. The simplest way to get the code is to clone the repository and its submodules
with:

git clone --recursive https://github.com/mapillary/OpenSfM

If you already have the code or you downloaded a release, make sure to update the submodules with:

cd OpenSfM
git submodule update --init --recursive

1.2 Install dependencies

OpenSfM depends on the following libraries that need to be installed before building it.

• OpenCV

• Ceres Solver

• NumPy, SciPy, Networkx, PyYAML, exifread

1.2.1 Installing dependencies on Ubuntu

If using Python 3, see this Dockerfile for the commands to install all dependencies on Ubuntu 18.04.

If using Python 2, follow the process here Dockerfile.python2.

The main steps are

1. Install OpenCV, NumPy, SciPy using apt-get

1

https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM/releases
http://opencv.org/
http://ceres-solver.org/
http://www.numpy.org/
http://www.scipy.org/
https://github.com/networkx/networkx
https://github.com/paulinus/opensfm-docker-base/blob/master/Dockerfile.python3
https://github.com/paulinus/opensfm-docker-base/blob/master/Dockerfile.python2

OpenSfM Documentation, Release 0.4.0

2. Install python requirements using pip

3. Build and Install the Ceres solver from its source using the -fPIC compilation flag.

1.2.2 Installing dependencies on MacOSX

Install OpenCV and the Ceres solver using:

brew install opencv
brew install ceres-solver
sudo pip install -r requirements.txt

Make sure you update your PYTHONPATH to include /usr/local/lib/python2.7/site-packages where
OpenCV have been installed. For example with:

export PYTHONPATH=/usr/local/lib/python2.7/site-packages:$PYTHONPATH

Note: Note on OpenCV 3 When running OpenSfM on top of OpenCV version 3.0 the OpenCV Contrib modules are
required for extracting SIFT or SURF features.

1.3 Building the library

Once the dependencies have been installed, you can build OpenSfM by running the following command from the main
folder:

python setup.py build

or python3 setup.py build for a Python 3 build.

1.4 Building the documentation

To build the documentation and browse it locally use:

cd doc
make livehtml

and browse http://localhost:8001/

2 Chapter 1. Building

http://ceres-solver.org/installation.html
https://github.com/itseez/opencv_contrib
http://localhost:8001/

CHAPTER 2

Using

2.1 Quickstart

An example dataset is available at data/berlin. You can reconstruct it using by running:

bin/opensfm_run_all data/berlin

This will run the entire SfM pipeline and produce the file data/berlin/reconstruction.meshed.json as
output. To visualize the result you can start a HTTP server running:

python3 -m http.server

and then browse http://localhost:8000/viewer/reconstruction.html#file=/data/berlin/reconstruction.meshed.json You
should see something like

3

http://localhost:8000/viewer/reconstruction.html#file=/data/berlin/reconstruction.meshed.json

OpenSfM Documentation, Release 0.4.0

You can click twice on an image to see it. Then use arrows to move between images.

If you want to get a denser point cloud, you can run:

bin/opensfm undistort data/berlin
bin/opensfm compute_depthmaps data/berlin

This will run dense multiview stereo matching and produce a denser point cloud stored in data/berlin/
unidtorted/depthmaps/merged.ply. You can visualize that point cloud using MeshLab or any other viewer
that supports PLY files.

For the Berlin dataset you should get something similar to this

4 Chapter 2. Using

http://www.meshlab.net/
http://paulbourke.net/dataformats/ply/

OpenSfM Documentation, Release 0.4.0

To reconstruct your own images,

1. put some images in data/DATASET_NAME/images/, and

2. copy data/berlin/config.yaml` to ``data/DATASET_NAME/config.yaml

2.2 Reconstruction Commands

There are several steps required to do a 3D reconstruction including feature detection, matching, SfM reconstruction
and dense matching. OpenSfM performs these steps using different commands that store the results into files for other
commands to use.

The single application bin/opensfm is used to run those commands. The first argument of the application is the
command to run and the second one is the dataset to run the commands on.

Here is the usage page of bin/opensfm, which lists the available commands:

usage: opensfm [-h] command ...

positional arguments:
command Command to run
extract_metadata

Extract metadata form images' EXIF tag
detect_features Compute features for all images
match_features Match features between image pairs

(continues on next page)

2.2. Reconstruction Commands 5

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

create_tracks Link matches pair-wise matches into tracks
reconstruct Compute the reconstruction
mesh Add delaunay meshes to the reconstruction
undistort Save radially undistorted images
compute_depthmaps

Compute depthmap
export_ply Export reconstruction to PLY format
export_openmvs Export reconstruction to openMVS format
export_visualsfm

Export reconstruction to NVM_V3 format from VisualSfM

optional arguments:
-h, --help show this help message and exit

2.2.1 extract_metadata

This commands extracts EXIF metadata from the images an stores them in the exif folder and the
camera_models.json file.

The following data is extracted for each image:

• width and height: image size in pixels

• gps latitude, longitude, altitude and dop: The GPS coordinates of the camera at capture time and
the corresponding Dilution Of Precision). This is used to geolocate the reconstruction.

• capture_time: The capture time. Used to choose candidate matching images when the option
matching_time_neighbors is set.

• camera orientation: The EXIF orientation tag (see this exif orientation documentation). Used to orient
the reconstruction straight up.

• projection_type: The camera projection type. It is extracted from the GPano metadata and used to deter-
mine which projection to use for each camera. Supported types are perspective, equirectangular and fisheye.

• focal_ratio: The focal length provided by the EXIF metadata divided by the sensor width. This is used as
initialization and prior for the camera focal length parameter.

• make and model: The camera make and model. Used to build the camera ID.

• camera: The camera ID string. Used to identify a camera. When multiple images have the same camera ID
string, they will be assumed to be taken with the same camera and will share its parameters.

Once the metadata for all images has been extracted, a list of camera models is created and stored in
camera_models.json. A camera model is created for each diferent camera ID string found on the images.

For each camera ID, the cammera model parameters are chosen using the following procedure.

• If the camera ID exists in the camera_models_overrides.json then the parameters are taken from that
file.

• Otherwise, if the camera ID exists in an internal calibration database, then the camera parameters are taken from
the database.

• Otherwise, the camera parameters are inferred from the avalable EXIF metadata.

6 Chapter 2. Using

http://sylvana.net/jpegcrop/exif_orientation.html
https://developers.google.com/streetview/spherical-metadata

OpenSfM Documentation, Release 0.4.0

Providing additional metadata

When some metadata is missing or erroneous in the EXIF, it can be provided on the exif_overrides.json file.
This file must contain a dictionary mapping image names to the metadata fields that will override the values in the
EXIF.

For example, to set the GPS location of an image that might not have it available in its EXIF tags, we will write the
following in the exif_overrides.json file:

{
"image_name.jpg": {

"gps": {
"latitude": 52.51891,
"longitude": 13.40029,
"altitude": 27.0,
"dop": 5.0

}
}

}

These values are used during the extract_metadata, so we will need to rerun that command after writing the file.

Providing your own camera parameters

By default, the camera parameters are taken from the EXIF metadata using the procedure described above. If you know
the camera parameters that you want to use, you can put them in a file named camera_models_overrides.
json in the project folder. This file should have the same structure as camera_models.json. That is a dictionary
mapping camera identifiers to the desired camera parameters.

When running the extract_metadata command, the parameters of any camera present in the
camera_models_overrides.json file will be copied to camera_models.json overriding the default ones.

The simplest way to create the camera_models_overrides.json file is to rename camera_models.json
and modify the parameters. You will need to rerun the extract_metadata command after that.

Optionally, you may want to override the camera parameters of all cameras in the dataset. To do so, use "all" as
camera ID. For example:

{
"all": {

"projection_type": "perspective",
"width": 1920,
"height": 1080,
"focal": 0.9,
"k1": 0.0,
"k2": 0.0,

}
}

will set all cameras to use a perspective projection model. Likewise:

{
"all": {

"projection_type": "fisheye",
"width": 1920,
"height": 1080,
"focal": 0.5,

(continues on next page)

2.2. Reconstruction Commands 7

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

"k1": 0.0,
"k2": 0.0,

}
}

will set all cameras to use a fisheye projection model. And:

{
"all": {

"projection_type": "equirectangular",
"width": 2000,
"height": 1000,

}
}

will set all cameras to use an equirectangular panoramic projection model.

Have a look at the spherical 360 images dataset for a complete example using camera_models_overrides.
json to specify that the camera is taking 360 equirectangular images.

2.2.2 detect_features

This command detects feature points in the images and stores them in the feature folder.

2.2.3 match_features

This command matches feature points between images and stores them in the matches folder. It first determines the
list of image pairs to run, and then run the matching process for each pair to find corresponding feature points.

Since there are a lot of possible image pairs, the process can be very slow. It can be speeded up by restricting the list
of pairs to match. The pairs can be restricted by GPS distance, capture time or file name order.

2.2.4 create_tracks

This command links the matches between pairs of images to build feature point tracks. The tracks are stored in the
tracks.csv file. A track is a set of feature points from different images that have been recognized to correspond to the
same pysical point.

2.2.5 reconstruct

This command runs the incremental reconstruction process. The goal of the reconstruction process is to find the 3D
position of tracks (the structure) together with the position of the cameras (the motion). The computed reconstruction
is stored in the reconstruction.json file.

2.2.6 mesh

This process computes a rough triangular mesh of the scene seen by each images. Such mesh is used for simu-
lating smooth motions between images in the web viewer. The reconstruction with the mesh added is stored in
reconstruction.meshed.json file.

8 Chapter 2. Using

https://www.dropbox.com/sh/3vabbmrhqqbagp5/AABi14O2tWMbxAX91jaaQY77a?dl=0

OpenSfM Documentation, Release 0.4.0

Note that the only difference between reconstruction.json and reconstruction.meshed.json is that
the later contains the triangular meshes. If you don’t need that, you only need the former file and there’s no need to
run this command.

2.2.7 undistort

This command creates undistorted version of the reconstruction, tracks and images. The undistorted version can later
be used for computing depth maps.

2.2.8 compute_depthmaps

This commands computes a dense point cloud of the scene by computing and merging depthmaps. It requires an
undistorted reconstructions. The resulting depthmaps are stored in the depthmaps folder and the merged point
cloud is stored in undistorted/depthmaps/merged.ply

2.3 Configuration

SfM algorithms have options and depend on various parameters. OpenSfM comes setup with default values for each
option but you might want to tune some options for a particular dataset. Options used to reconstruct a dataset can be
set by editing the file DATASET_PATH/config.yaml. Any option present in this file will override the default.

Checkout the default configuration to see the list of options.

2.4 Ground Control Points

When EXIF data contains GPS location, it is used by OpenSfM to georeference the reconstruction. Additionally, it is
possible to use ground control points.

Ground control points (GCP) are landmarks visible on the images for which the geospatial position (latitude, longitude
and altitude) is known. A single GCP can be observed in one or more images.

OpenSfM uses GCP in two steps of the reconstruction process: alignment and bundle adjustment. In the alignment
step, points are used to globaly move the reconstruction so that the observed GCP align with their GPS position. Two
or more observations for each GCP are required for it to be used during the aligment step.

In the bundle adjustment step, GCP observations are used as a constraint to refine the reconstruction. In this step, all
ground control points are used. No minimum number of observation is required.

GPSs can be specified in two file formats. If existing, both are loaded.

2.4.1 JSON file format

GCPs can be specified by adding a text file named ground_control_points.json at the root folder of the
dataset. The format of the file should be as follows:

{
"points": [
{

"id": STRING,
"position": {

(continues on next page)

2.3. Configuration 9

_modules/opensfm/config.html

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

"latitude": FLOAT,
"longitude": FLOAT,
"altitude": FLOAT # optional

},
"observations": [

{
"shot_id": STRING,
"projection": [FLOAT, FLOAT] # in normalized image coordinates

},
...

]
},
...

]
}

For each point, the latitude and longitude in WGS84 are required. The altitude, in meters, is optional. For each
image where the point has been observed, the image id and the coordinates of the observation in Normalized Image
Coordinates are required.

2.4.2 TXT file format

GCPs can be specified by adding a text file named gcp_list.txt at the root folder of the dataset. The format of
the file should be as follows.

• The first line should contain the name of the projection used for the geo coordinates.

• The following lines should contain the data for each ground control point observation. One per line and in the
format:

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name>

Where <geo_x> <geo_y> <geo_z> are the geospatial coordinates of the GCP and <im_x> <im_y> are
the Pixel Coordinates where the GCP is observed. If the altitude of the GCP is not known, set <geo_z> to
NaN.

Supported projections

The geospatial coordinates can be specified in one the following formats.

• WGS84: This is the standard latitude, longitude coordinates used by most GPS devices. In this case, <geo_x>
= longitude, <geo_y> = latitude and <geo_z> = altitude

• UTM: UTM projections can be specified using a string projection string such as WGS84 UTM 32N, where 32
is the region and N is . In this case, <geo_x> = E, <geo_y> = N and <geo_z> = altitude

• proj4: Any valid proj4 format string can be used. For example, for UTM 32N we can use +proj=utm
+zone=32 +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs

Example

This file defines 2 GCP whose coordinates are specified in the WGS84 standard. The first one is observed in both
01.jpg and 02.jpg, while the second one is only observed in 01.jpg

WGS84
13.400740745 52.519134104 12.0792090446 2335.0 1416.7 01.jpg
13.400740745 52.519134104 12.0792090446 2639.1 938.0 02.jpg
13.400502446 52.519251158 16.7021233002 766.0 1133.1 01.jpg

10 Chapter 2. Using

https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
http://proj4.org/

CHAPTER 3

Dataset Structure

project/
config.yaml
images/
masks/
gcp_list.txt
exif/
camera_models.json
features/
matches/
tracks.csv
reconstruction.json
reconstruction.meshed.json
undistorted/

images/
masks/
tracks.csv
reconstruction.json
depthmaps/

merged.ply

Previous versions of OpenSfM used a different folder structure where undistorted data was not grouped into a single
folder. Please, read and use bin/migrate_undistort.sh to port old datasets to the new folder structure.

11

OpenSfM Documentation, Release 0.4.0

12 Chapter 3. Dataset Structure

CHAPTER 4

Reconstruction file format

The main output of OpenSfM is a reconstruction that contains the estimated camera parameters, the estimated camera
positions and a sparse set of reconstructed 3D points. These data are stored in the reconstruction.json file. Its
format is as follows:

reconstruction.json: [RECONSTRUCTION, ...]

RECONSTRUCTION: {
"cameras": {

CAMERA_ID: CAMERA,
...

},
"shots": {

SHOT_ID: SHOT,
...

},
"points": {

POINT_ID: POINT,
...

}
}

CAMERA: {
"projection_type": "perspective", # Can be perspective, brown, fisheye or

→˓equirectangular
"width": NUMBER, # Image width in pixels
"height": NUMBER, # Image height in pixels

Depending on the projection type more parameters are stored.
These are the parameters of the perspective camera.
"focal": NUMBER, # Estimated focal length
"k1": NUMBER, # Estimated distortion coefficient
"k2": NUMBER, # Estimated distortion coefficient

}

(continues on next page)

13

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

SHOT: {
"camera": CAMERA_ID,
"rotation": [X, Y, Z], # Estimated rotation as an angle-axis vector
"translation": [X, Y, Z], # Estimated translation
"gps_position": [X, Y, Z], # GPS coordinates in the reconstruction reference

→˓frame
"gps_dop": METERS, # GPS accuracy in meters
"orientation": NUMBER, # EXIF orientation tag (can be 1, 3, 6 or 8)
"capture_time": SECONDS # Capture time as a UNIX timestamp

}

POINT: {
"coordinates": [X, Y, Z], # Estimated position of the point
"color": [R, G, B], # Color of the point

}

14 Chapter 4. Reconstruction file format

CHAPTER 5

Geometric Models

5.1 Coordinate Systems

5.1.1 Normalized Image Coordinates

The 2d position of a point in images is stored in what we will call normalized image coordinates. The origin is in the
middle of the image. The x coordinate grows to the right and y grows downwards. The larger dimension of the image
is 1.

This means, for example, that all the pixels in an image with aspect ratio 4:3 will be contained in the intervals [-0.5,
0.5] and [3/4 * (-0.5), 3/4 * 0.5] for the X and Y axis respectively.

+-----------------------------+
| |
| |
| |
| + ------------->
| | (0, 0) | (0.5, 0)
| | |
| | |
+-----------------------------+

|
v
(0, 0.5)

Normalized coordinates are independent of the resolution of the image and give better numerical stability for some
multi-view geometry algorithms than pixel coordinates.

5.1.2 Pixel Coordinates

Many OpenCV functions that work with images use pixel coordinates. In that reference frame, the origin is at the
center of the top-left pixel, x grow by one for every pixel to the right and y grows by one for every pixel downwards.
The bottom-right pixel is therefore at (width - 1, height - 1).

15

OpenSfM Documentation, Release 0.4.0

The transformation from normalised image coordinates to pixel coordinates is

𝐻 =

⎛⎝max(𝑤, ℎ) 0 𝑤−1
2

0 max(𝑤, ℎ) ℎ−1
2

0 0 1

⎞⎠ ,

and its inverse

𝐻−1 =

⎛⎝1 0 −𝑤−1
2

0 1 −ℎ−1
2

0 0 max(𝑤, ℎ)

⎞⎠ ,

where 𝑤 and ℎ being the width and height of the image.

5.1.3 Upright Coordinates

When taking pictures, a camera might be rotated in either portrait or in landscape orientation. But the corresponding
image file will always store the pixels in the same order, the one when the camera is supposed to be upright.

To overcome this issue, most camera store this orientation (i.e. camera orientation at shoot time) in the EXIFs in the
orientation tag. Most editing software will also use this information to display image correctly.

That’s why, when editing a mask with your favorite software, you don’t need to bother about image orientation as
OpenSfM will automatically apply the right rotation correction so your mask will be aligned with the original image.

Please note that Normalized Image Coordinates and Pixel Coordinates are NOT corrected for upright, and are really
original image coordinates.

5.1.4 World Coordinates

The position of the reconstructed 3D points is stored in world coordinates. In general, this is an arbitrary euclidean
reference frame.

When GPS data is available, a topocentric reference frame is used for the world coordinates reference. This is a
reference frame that with the origin somewhere near the ground, the X axis pointing to the east, the Y axis pointing
to the north and the Z axis pointing to the zenith. The latitude, longitude, and altitude of the origin are stored in the
reference_lla.json file.

When GPS data is not available, the reconstruction process makes its best to rotate the world reference frame so that
the vertical direction is Z and the ground is near the z = 0 plane. It does so by assuming that the images are taken from
similar altitudes and that the up vector of the images corresponds to the up vector of the world.

5.1.5 Camera Coordinates

The camera coordinate reference frame has the origin at the camera’s optical center, the X axis is pointing to the right
of the camera the Y axis is pointing down and the Z axis is pointing to the front. A point in front of the camera has
positive Z camera coordinate.

The pose of a camera is determined by the rotation and translation that converts world coordinates to camera coordi-
nates.

5.2 Camera Models

The camera models deal with the projection of 3D points expressed in camera coordinates x, y, z into points u,
v in normalized image coordinates.

16 Chapter 5. Geometric Models

OpenSfM Documentation, Release 0.4.0

5.2.1 Perspective Camera

𝑥𝑛 = 𝑥
𝑧

𝑦𝑛 = 𝑦
𝑧

𝑟2 = 𝑥2
𝑛 + 𝑦2𝑛

𝑑 = 1 + 𝑘1𝑟
2 + 𝑘2𝑟

4

𝑢 = 𝑓 𝑑 𝑥𝑛

𝑣 = 𝑓 𝑑 𝑦𝑛

5.2.2 Fisheye Camera

𝑟2 = 𝑥2 + 𝑦2

𝜃 = arctan(𝑟/𝑧)
𝑑 = 1 + 𝑘1𝜃

2 + 𝑘2𝜃
4

𝑢 = 𝑓 𝑑 𝜃 𝑥
𝑟

𝑣 = 𝑓 𝑑 𝜃 𝑦
𝑟

5.2.3 Spherical Camera

lon = arctan
(︀
𝑥
𝑧

)︀
lat = arctan

(︁
−𝑦√
𝑥2+𝑧2

)︁
𝑢 = lon

2𝜋

𝑣 = − lat
2𝜋

5.2. Camera Models 17

OpenSfM Documentation, Release 0.4.0

18 Chapter 5. Geometric Models

CHAPTER 6

Camera Coordinate System and Conventions

6.1 Camera

The pose of a camera, conceptually, consists of two things:

1. Which direction does it face in, i.e. its local coordinate axes

2. Where is it, i.e. the position of the camera origin

6.1.1 Local coordinate system of camera

These online docs say that, from the POV of a camera (a.k.a. a Shot object):

• The z-axis points forward

• The y-axis points down

• The x-axis points to the right

I can confirm, after experimentation, that this is accurate. (In the 3D reconstruction viewer, the axes go Red, Green,
Blue: x, y, z.)

19

OpenSfM Documentation, Release 0.4.0

The OpenSfM Pose class contains a rotation field, representing the local coordinate system as an axis-angle
vector.

• The direction of this 3D vector represents the axis around which to rotate.

• The length of this vector is the angle to rotate around said axis.

Sounds like it makes sense, but when it actually comes to working with code, all the hidden conventions crawl out of
the shadows.

First is the obviously unstated unit of angular measurement. In computer maths libraries it’s generally safe to assume
everything’s in radians, and it certainly looks like that here.

Next, a “rotation axis” is really just a line. But a vector, even a unit vector, defines a line 𝜆v with orientation. One
direction is “positive scalar”, the opposite is “negative scalar”. Could there be a difference between rotating around v
and rotating around −v?

Look at a clock face-on. Pick the axis from its face to your face. It’s rotating clockwise around this axis. Now turn
the clock around to face the opposite direction. Looking through the back of the clock, the hands rotate anticlockwise
around the negative of the original axis. So rotating by 𝜃 around −v is the same as rotating −𝜃 around v.

Even if we know that two representations are opposite, this still doesn’t tell us which is which. What is a “rotation
around the z-axis”? This sounds like asking whether each axis is clockwise or anticlockwise, but even this depends on
which way you’re looking. . .

Instead, the real question being asked is: Does a rotation by a small positive angle, around the positive z axis, rotate in
the x-to-y direction, or the y-to-x direction? And likewise for the other axes.

To find out, I set the rotation vectors to rotate 1 radian around each of the axes. Results are:

20 Chapter 6. Camera Coordinate System and Conventions

OpenSfM Documentation, Release 0.4.0

“Rotate around Z” is Y-to-X

With pose.rotation = [0, 0, 1]:

“Rotate around Y” is X-to-Z

With pose.rotation = [0, 1, 0]:

6.1. Camera 21

OpenSfM Documentation, Release 0.4.0

“Rotate around X” is Z-to-Y

With pose.rotation = [1, 0, 0]:

22 Chapter 6. Camera Coordinate System and Conventions

OpenSfM Documentation, Release 0.4.0

It basically works like this (apologies for ASCII art):

Z ----+
/ | |

/ | V
^ |_____Y

(continues on next page)

6.1. Camera 23

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

| / /
| / /
X <-----+

6.1.2 Where is the camera?

Conceptually, this is a simple translation, in world coordinates, to the camera’s origin position.

OpenSfM, however, chooses not to store the “camera origin” in Pose objects. Instead, it stores the camera coordi-
nates of the world origin in the translation field.

These obviously depend on the position and, in particular, rotation of the camera. They are automatically calculated
by the pose.set_origin(origin) method, using the current pose.rotation.

Because of this dependency, if the camera turns around, the translation will need updating. But
pose.set_rotation_matrix() does not do this. So you should never call set_origin() before
set_rotation_matrix(). Only set the origin afterwards.

The case where you only want to change the rotation, while keeping the position the same, is a bit subtle. You will have
to manually update pose.translation after setting the rotation, but to what? You can’t call get_origin()
after updating the rotation, because this will calculate the origin from translation using the new rotation instead
of the old one. The translation value only makes sense the coordinate system that set it. It must be kept in sync
with rotation, something that seems to have been overlooked in the version at the time of writing.

Solution to safely set pose rotation:

org = pose.get_origin() # save where the camera actually is
pose.set_rotation_matrix(R) # set the rotation
pose.set_origin(org) # update the translation property accordingly...

24 Chapter 6. Camera Coordinate System and Conventions

CHAPTER 7

Incremental reconstruction algorithm

OpenSfM implements an incremental structure from motion algorithm. This is reconstruction algorithm that starts
building a reconstruction of a single image pair and then iteratively add the other images to the reconstruction one at
a time.

The algorithm is implemented in the reconstruction.py module and the main entry point is the
incremental_reconstruction() function.

The algorithm has three main steps:

1. Find good initial pairs

2. Bootstrap the reconstruction with two images

3. Grow the reconstruction by adding images one at a time

If after step 3 there are images that have not yet been reconstructed, steps 2 and 3 are repeated to generate more
reconstructions.

7.1 1. Finding good initial pairs

To compute the initial reconstruction using two images, there needs to be enough parallax between them. That is, the
camera should have been displaced between the two shots, and the displacement needs to be large enough compared
to the distance to the scene.

To compute whether there is enough parallax, we start by trying to fit a rotation only camera model to the two images.
We only consider image pairs that have a significant portion of the correspondences that can not be explained by the
rotation model. We compute the number of outliers of the model and accept it only if the portion of outliers is larger
than 30%.

The accepted image pairs are sorted by the number of outliers of the rotation only model.

This step is done by the compute_image_pairs() function.

25

OpenSfM Documentation, Release 0.4.0

7.2 2. Bootstraping the reconstruction

To bootstrap the reconstruction, we use the first image pair. If initialization fails we try with the next on the list. If the
initialization works, we pass it to the next step to grow it with more images.

The reconstruction from two views can be done by two algorithms depending on the geometry of the scene. If the
scene is flat, a plane-based initialization is used, if it is not flat, then the five-point algorithm is used. Since we do not
know a priori if the scene is flat, both initializations are computed and the one that produces more points is retained
(see the two_view_reconstruction_general() function).

If the pair gives enough inliers we initialize a reconstruction with the corresponding poses, triangulate the matches and
bundle adjust it.

7.3 3. Growing the reconstruction

Given the initial reconstruction with two images, more images are added one by one starting with the one that sees
more of the reconstructed points.

To add an image it needs first needs to be aligned to the reconstruction. This is done by finding the camera position
that makes the reconstructed 3D points project to the corresponding position in the new image. The process is called
resectioning and is done by the resect() function.

If resectioning works, the image is added to the reconstruction. After adding it, all features of the new image that
are also seen in other reconstructed images are triangulated. If needed, the reconstruction is then bundle adjusted and
eventually all features are re-triangulated. The parameters bundle_interval, bundle_new_points_ratio,
retriangulation and retriangulation_ratio control when bundle and re-triangulation are needed.

Finally, if the GPS positions of the shots or Ground Control Points (GPS) are available, the reconstruction is rigidly
moved to best align to those.

26 Chapter 7. Incremental reconstruction algorithm

CHAPTER 8

Splitting a large dataset into smaller submodels

Large datasets can be slow to process. An option to speed up the reconstruction process is to split them into smaller
datasets. We will call each of the small datasets a submodel. Smaller datasets run faster because they involve fewer
images on each bundle adjustment iteration. Additionally, the reconstruction of the different submodels can be done
in parallel.

Since the reconstructions of the submodels are done independently, they will not be necessarily aligned with each
other. Only the GPS positions of the images and the ground control points will determine the alignment. When the
neighboring reconstructions share cameras or points, it is possible to enforce the alignment of common cameras and
points between the different reconstructions.

In the following, we describe the commands that help to split a large dataset and aligning the resulting submodels.

8.1 Creating submodels

The command create_submodels splits a dataset into submodels. The splitting is done based on the GPS position
of the images. Therefore, it is required to run extract_metadata before so that the GPS positions are read from
the image metadata.

Additionally, the feature extraction and matching can also be done before creating the submodels. This makes it
possible for each submodel to reuse the features and matches of the common images.

The process to split a dataset into submodels is then:

bin/opensfm extract_metadata path/to/dataset
bin/opensfm detect_features path/to/dataset
bin/opensfm match_features path/to/dataset
bin/opensfm create_submodels path/to/dataset

8.1.1 Submodels dataset structure

The submodels are created inside the submodels folder. Each submodel folder is a valid OpenSfM dataset. The
images, EXIF metadata, features, and matches are shared with the global dataset by using symbolic links.

27

OpenSfM Documentation, Release 0.4.0

project/
images/
opensfm/
image_list.txt
image_list_with_gps.csv # list of original images with GPS position
exif
features # eventually
matches # eventually
submodels/

clusters_with_neighbors.geojson # geojson file with all images as features
→˓with corresponding submodel as a property

clusters_with_neighbors.npz
clusters.npz
image_list_with_gps.tsv
submodel_0000/

image_list.txt # images of submodel_0000
config.yaml # copy from global equivalent
images/ # link to global equivalent
exif/ # link to global equivalent
features/ # link to global equivalent
matches/ # link to global equivalent
camera_models.json # link to global equivalent
reference_lla.json # link to global equivalent

submodel_0001/
...

8.1.2 Config parameters

The creation of the submodels can be tuned by different parameters.

There are two parameters controlling the size and overlap of the submodels. The parameters need to be adjusted to the
size.

• submodel_size Average number of images per submodel. The splitting of the dataset is done by clustering
image locations into groups. K-means clustering is used and k is set to be the number of images divided by
submodel_size.

• submodel_overlap Radius of the overlapping region between submodels in meters. To be able to align the
different submodels, there needs to be some common images between the neighboring submodels. Any image
that is closer to a cluster than submodel_overlap it is added to that cluster.

The folder structure of the submodels can also be controlled using the following parameters. You shouldn’t need to do
change them.

• submodels_relpath Relative path to the submodels directory. Cluster information will be stored in this
directory.

• submodel_relpath_template Template to generate the relative path to a submodel directory.

• submodel_images_relpath_template Template to generate the relative path to a submodel images
directory.

8.1.3 Providing the image groups

The create_submodels command clusters images into groups to decide the partition into submodels. If you
already know how you want to split the dataset, you can provide that information and it will be used instead of the
clustering algorithm.

28 Chapter 8. Splitting a large dataset into smaller submodels

OpenSfM Documentation, Release 0.4.0

The grouping can be provided by adding a file named image_groups.txt in the main dataset folder. The file
should have one line per image. Each line should have two words: first the name of the image and second the name of
the group it belongs to. For example:

01.jpg A
02.jpg A
03.jpg B
04.jpg B
05.jpg C

will create 3 submodels.

Starting from this groups, create_submodels will add to each submodel the images in the overlap area based on
the submodels_overlap parameter.

8.2 Running the reconstruction for each submodel

Since each submodel is a valid OpenSfM dataset, the reconstruction can be run using the standard commands. Assum-
ing features and matches have already been computed, we will need to run:

bin/opensfm create_tracks path/to/dataset/submodels/submodel_XXXX
bin/opensfm reconstruct path/to/dataset/submodels/submodel_XXXX

for each submodel. This can be run in parallel since the submodels are independent.

8.3 Aligning submodels

Once every submodel has a reconstruction, they can be aligned by using the command:

bin/opensfm align_submodels path/to/dataset

This command will load all the reconstructions, look for cameras and points shared between the reconstructions, and
move each reconstruction rigidly in order best align the corresponding cameras and points.

8.2. Running the reconstruction for each submodel 29

OpenSfM Documentation, Release 0.4.0

30 Chapter 8. Splitting a large dataset into smaller submodels

CHAPTER 9

Reporting

OpenSfM commands write reports on the work done. Reports are stored in the reports folder in json format so that
they can be loaded programatically. Here is the list of reports produced and the data included.

9.1 Feature detection

The report on feature detection is stored in the file features.json. Its structure is as follow:

{
"wall_time": {{ total time compting features }},
"image_reports": [# For each image

{
"wall_time": {{ feature extraction time }},
"image": {{ image name }},
"num_features": {{ number of features }}

},
...

]
}

9.2 Matching

The report on matching is stored in the file matches.json. Its structure is as follow:

{
"wall_time": {{ total time compting matches }},
"pairs": {{ list of candidate image pairs }}
"num_pairs": {{ number of candidate image pairs }},
"num_pairs_distance": {{ number of pairs selected based on distance }},
"num_pairs_time": {{ number of pairs selected based on time }},

(continues on next page)

31

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

"num_pairs_order": {{ number of pairs selected based on order }},
}

9.3 Create tracks

The report on tracks creation is stored in the file tracks.json. Its structure is as follow:

{
"wall_time": {{ total time computing tracks }}
"wall_times": {

"load_features": {{ time loading features }},
"load_matches": {{ time loading matches }},
"compute_tracks": {{ time computing tracks }},

},
"num_images": {{ number of images with tracks }},
"num_tracks": {{ number of tracks }},
"view_graph": {{ number of image tracks for each image pair }}

}

9.4 Reconstruction

The report on the reconstruction process is stored in the file reconstruction.json. Its structure is as follow:

{
"wall_times": {

"compute_reconstructions": {{ time computing the reconstruction }},
"compute_image_pairs": {{ time computing the candidate initial pairs }},
"load_tracks_graph": {{ time loading tracks }}

},
"num_candidate_image_pairs": {{ number of candidate image pairs for initializing

→˓reconstructions }},
"reconstructions": [# For each reconstruction build

{
"bootstrap": { # Initialization information

"memory_usage": {{ memory usage at the end of the process }},
"image_pair": {{ initial image pair }},
"common_tracks": {{ number of common tracks of the image pair }},
"two_view_reconstruction": {

"5_point_inliers": {{ number of inliers for the 5-point algorithm
→˓}},

"plane_based_inliers": {{ number of inliers for the plane based
→˓initialization }},

"method": {{ method used for initialization "5_point" or "plane_
→˓based" }}

},
"triangulated_points": {{ number of triangulated points }},
"decision": {{ either "Success" or the reason for failure }},

},
"grow": { # Incremental growth information

"steps": [# For every growth step
{

(continues on next page)

32 Chapter 9. Reporting

OpenSfM Documentation, Release 0.4.0

(continued from previous page)

"image": {{ image name }},
"resection": {

"num_inliers": {{ number of inliers }},
"num_common_points": {{ number of reconstructed points

→˓visible on the new image }}
},
"triangulated_points": {{ number of newly triangulated points

→˓}},
"memory_usage": {{ memory usage after adding the image }},
"bundle": {

"wall_times": {
"setup": {{ time setting up bundle }},
"run": {{ time running bundle }},
"teardown": {{ time updating the values after bundle }

→˓},
},
"brief_report": {{ Ceres brief report }}

},
}

]
}

}
],
"not_reconstructed_images": {{ images that could not be reconstructed }},

}

9.4. Reconstruction 33

OpenSfM Documentation, Release 0.4.0

34 Chapter 9. Reporting

CHAPTER 10

Code Documentation

10.1 Dataset I/O

10.2 Reconstruction Types

10.3 Features

10.4 Matching

10.5 Incremental Reconstruction

10.6 Config

35

OpenSfM Documentation, Release 0.4.0

36 Chapter 10. Code Documentation

CHAPTER 11

Python 2 and 3 compatibility

The code must be compatible Python versions 2.7 and 3.6+.

Here are the basic rules to follow for all new code. Existing code needs to be revised to follow these rules. See the
official guide for general rules.

11.1 Absolute imports

Always use absolute imports. Import absolute imports from future to disable relative imports.

from __future__ import absolute_import

11.2 Print

Use loggers instead of print when possible. When using print, use it as a function with parenthesis. Include print from
future to disable Python 2 style print.

from __future__ import print_function

11.3 Division

Always add

from __future__ import division

to make sure that division acts the Python 3 way. Use // when you need integer division.

37

https://docs.python.org/3/howto/pyporting.html

OpenSfM Documentation, Release 0.4.0

11.4 Text

All text should be Unicode. Encode Unicode text from and to bytes using UTF-8 encoding when doing I/O operations.
Encoding and decoding is done as close as possible to the I/O operations. Some people refer to that as the Unicode
sandwich.

By default, string literals are byte strings in Python 2 and Unicode strings in Python 3. Import Unicode literals from
future to make all string literals Unicode in any Python version.

from __future__ import unicode_literals

When you really need a byte string literal create it with b"".

Use opensfm.io.open_rt and opensfm.io.open_wt to open text files for reading and writing. This func-
tions take care of decoding and encoding UTF-8 files from and into Unicode.

Use opensfm.io.json_load, opensfm.io.json_loads, opensfm.io.json_dump, and opensfm.
io.json_dumps to encode and decode JSON documents. This functions make sure that the JSON representation
is Unicode text and that, when written in a file, it is written using UTF-8 encoding.

38 Chapter 11. Python 2 and 3 compatibility

https://nedbatchelder.com/text/unipain/unipain.html#35
https://nedbatchelder.com/text/unipain/unipain.html#35

CHAPTER 12

Indices and tables

• genindex

39

	Building
	Using
	Dataset Structure
	Reconstruction file format
	Geometric Models
	Camera Coordinate System and Conventions
	Incremental reconstruction algorithm
	Splitting a large dataset into smaller submodels
	Reporting
	Code Documentation
	Python 2 and 3 compatibility
	Indices and tables

