

OpenSfM

	Building

	Using

	Dataset Structure

	Geometric Models

	Camera Coordinate System and Conventions

	Incremental reconstruction algorithm

	Splitting a large dataset into smaller submodels

	Reporting

	Code Documentation

	Python 2 and 3 compatibility

Indices and tables

	Index

Building

OpenSfM code is available at Github [https://github.com/mapillary/OpenSfM].

OpenSfM depends on the following libraries that need to be installed before building it.

	OpenCV [http://opencv.org/]

	OpenGV [http://laurentkneip.github.io/opengv/]

	Ceres Solver [http://ceres-solver.org/]

	Boost Python [http://www.boost.org/]

	NumPy [http://www.numpy.org/], SciPy [http://www.scipy.org/], Networkx [https://github.com/networkx/networkx], PyYAML, exifread

Once the dependencies have been installed, you can build OpenSfM by running the following command from the main folder:

python setup.py build

Installing dependencies on Ubuntu

See this Dockerfile [https://github.com/paulinus/opensfm-docker-base/blob/master/Dockerfile] for the commands to install all dependencies on Ubuntu 14.04. The steps are

	Install OpenCV, Boost Python, NumPy, SciPy using apt-get

	Install python requirements using pip

	Clone, build and install OpenGV following the receipt in the Dockerfile

	Build and Install [http://ceres-solver.org/installation.html] the Ceres solver from its source using the -fPIC compilation flag.

Installing dependencies on MacOSX

Install OpenCV, boost python and the Ceres solver using:

brew tap homebrew/science
brew install opencv
brew install homebrew/science/ceres-solver
brew install boost-python
sudo pip install -r requirements.txt

And install OpenGV using:

brew install eigen
git clone https://github.com/paulinus/opengv.git
cd opengv/build
cd opengv/build
cmake .. -DBUILD_TESTS=OFF -DBUILD_PYTHON=ON
make install

Be sure to update your PYTHONPATH to include /usr/local/lib/python2.7/site-packages where OpenCV and OpenGV have been installed. For example:

export PYTHONPATH=/usr/local/lib/python2.7/site-packages:$PYTHONPATH

Note on OpenCV 3

When running OpenSfM on top of OpenCV version 3.0 the OpenCV Contrib [https://github.com/itseez/opencv_contrib] modules are required for extracting SIFT or SURF features.

Building the documentation

To build the documentation and browse it locally use:

cd doc
make livehtml

and browse http://localhost:8001/

Using

Quickstart

An example dataset is available at data/berlin. You can reconstruct it using by running:

bin/opensfm_run_all data/berlin

This will run the entire SfM pipeline and produce the file data/berlin/reconstruction.meshed.json as output. To visualize the result you can start a HTTP server running:

python -m SimpleHTTPServer

and then browse http://localhost:8000/viewer/reconstruction.html#file=/data/berlin/reconstruction.meshed.json
You should see something like

[image: _images/berlin_viewer.jpg]
You can click twice on an image to see it. Then use arrows to move between images.

If you want to get a denser point cloud, you can run:

bin/opensfm undistort data/berlin
bin/opensfm compute_depthmaps data/berlin

This will run dense multiview stereo matching and produce a denser point cloud stored in data/berlin/depthmaps/merged.ply. You can visualize that point cloud using MeshLab [http://www.meshlab.net/] or any other viewer that supports PLY [http://paulbourke.net/dataformats/ply/] files.

For the Berlin dataset you should get something similar to this

[image: _images/berlin_point_cloud.jpg]
To reconstruct your own images,

	put some images in data/DATASET_NAME/images/, and

	copy data/berlin/config.yml` to ``data/DATASET_NAME/config.yaml

Reconstruction Commands

There are several steps required to do a 3D reconstruction including feature detection, matching, SfM reconstruction and dense matching. OpenSfM performs these steps using different commands that store the results into files for other commands to use.

The single application bin/opensfm is used to run those commands. The first argument of the application is the command to run and the second one is the dataset to run the commands on.

Here is the usage page of bin/opensfm, which lists the available commands:

usage: opensfm [-h] command ...

positional arguments:
 command Command to run
 extract_metadata
 Extract metadata form images' EXIF tag
 detect_features Compute features for all images
 match_features Match features between image pairs
 create_tracks Link matches pair-wise matches into tracks
 reconstruct Compute the reconstruction
 mesh Add delaunay meshes to the reconstruction
 undistort Save radially undistorted images
 compute_depthmaps
 Compute depthmap
 export_ply Export reconstruction to PLY format
 export_openmvs Export reconstruction to openMVS format
 export_visualsfm
 Export reconstruction to NVM_V3 format from VisualSfM

optional arguments:
 -h, --help show this help message and exit

extract_metadata

This commands extracts EXIF metadata from the images an stores them in the exif folder and the camera_models.json file.

The following data is extracted for each image:

	width and height: image size in pixels

	gps latitude, longitude, altitude and dop: The GPS coordinates of the camera at capture time and the corresponding Degree Of Precission). This is used to geolocate the reconstruction.

	capture_time: The capture time. Used to choose candidate matching images when the option matching_time_neighbors is set.

	camera orientation: The EXIF orientation tag (see this exif orientation documentation [http://sylvana.net/jpegcrop/exif_orientation.html]). Used to orient the reconstruction straigh up.

	projection_type: The camera projection type. It is extracted from the GPano [https://developers.google.com/streetview/spherical-metadata] metadata and used to determine which projection to use for each camera. Supported types are perspective, equirectangular and fisheye.

	focal_ratio: The focal length provided by the EXIF metadata divided by the sensor width. This is used as initialization and prior for the camera focal length parameter.

	make and model: The camera make and model. Used to build the camera ID.

	camera: The camera ID string. Used to identify a camera. When multiple images have the same camera ID string, they will be assumed to be taken with the same camera and will share its parameters.

Once the metadata for all images has been extracted, a list of camera models is created and stored in camera_models.json. A camera is created for each diferent camera ID string found on the images.

For each camera the following data is stored:

	width and height: image size in pixels

	projection_type: the camera projection type

	focal: The initial estimation of the focal length (as a multiple of the sensor width).

	k1 and k2: The initial estimation of the radial distortion parameters. Only used for perspective and fisheye projection models.

	focal_prior: The focal length prior. The final estimated focal length will be forced to be similar to it.

	k1_prior and k2_prior: The radial distortion parameters prior.

Providing your own camera parameters

By default, the camera parameters are taken from the EXIF metadata but it is also possible to override the default parameters. To do so, place a file named camera_models_overrides.json in the project folder. This file should have the same structure as camera_models.json. When running the extract_metadata command, the parameters of any camera present in the camera_models_overrides.json file will be copied to camera_models.json overriding the default ones.

Simplest way to create the camera_models_overrides.json file is to rename camera_models.json and modify the parameters. You will need to rerun the extract_metadata command after that.

Here is a spherical 360 images dataset [https://www.dropbox.com/sh/3vabbmrhqqbagp5/AABi14O2tWMbxAX91jaaQY77a?dl=0] example using camera_models_overrides.json to specify that the camera is taking 360 equirectangular images.

detect_features

This command detect feature points in the images and stores them in the feature folder.

match_features

This command matches feature points between images and stores them in the matches folder. It first determines the list of image pairs to run, and then run the matching process for each pair to find corresponding feature points.

Since there are a lot of possible image pairs, the process can be very slow. It can be speeded up by restricting the list of pairs to match. The pairs can be restricted by GPS distance, capture time or file name order.

create_tracks

This command links the matches between pairs of images to build feature point tracks. The tracks are stored in the tracks.csv file. A track is a set of feature points from different images that have been recognized to correspond to the same pysical point.

reconstruct

This command runs the incremental reconstruction process. The goal of the reconstruction process is to find the 3D position of tracks (the structure) together with the position of the cameras (the motion). The computed reconstruction is stored in the reconstruction.json file.

mesh

This process computes a rough triangular mesh of the scene seen by each images. Such mesh is used for simulating smooth motions between images in the web viewer. The reconstruction with the mesh added is stored in reconstruction.meshed.json file.

Note that the only difference between reconstruction.json and reconstruction.meshed.json is that the later contains the triangular meshes. If you don’t need that, you only need the former file and there’s no need to run this command.

undistort

This command creates undistorted version of the reconstruction, tracks and images. The undistorted version can later be used for computing depth maps.

compute_depthmaps

This commands computes a dense point cloud of the scene by computing and merging depthmaps. It requires an undistorted reconstructions. The resulting depthmaps are stored in the depthmaps folder and the merged point cloud is stored in depthmaps/merged.ply

Configuration

TODO explain config.yaml and the available parameters

Ground Control Points

When EXIF data contains GPS location, it is used by OpenSfM to georeference the reconstruction. Additionally, it is possible to use ground control points.

Ground control points (GCP) are landmarks visible on the images for which the geospatial position (latitude, longitude and altitude) is known. A single GCP can be observed in one or more images.

OpenSfM uses GCP in two steps of the reconstruction process: alignment and bundle adjustment. In the alignment step, points are used to globaly move the reconstruction so that the observed GCP align with their GPS position. Two or more observations for each GCP are required for it to be used during the aligment step.

In the bundle adjustment step, GCP observations are used as a constraint to refine the reconstruction. In this step, all ground control points are used. No minimum number of observation is required.

File format

GCPs can be specified by adding a text file named gcp_list.txt at the root folder of the dataset. The format of the file should be as follows.

	The first line should contain the name of the projection used for the geo coordinates.

	The following lines should con should contain the data for each ground control point observation. One per line and in the format:

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name>

Where <geo_x> <geo_y> <geo_z> are the geospatial coordinates of the GCP and <im_x> <im_y> are the pixel coordinates where the GCP is observed.

Supported projections

The geospatial coordinates can be specified in one the following formats.

	WGS84 [https://en.wikipedia.org/wiki/World_Geodetic_System]: This is the standard latitude, longitude coordinates used by most GPS devices. In this case, <geo_x> = longitude, <geo_y> = latitude and <geo_z> = altitude

	UTM [https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system]: UTM projections can be specified using a string projection string such as WGS84 UTM 32N, where 32 is the region and N is . In this case, <geo_x> = E, <geo_y> = N and <geo_z> = altitude

	proj4 [http://proj4.org/]: Any valid proj4 format string can be used. For example, for UTM 32N we can use +proj=utm +zone=32 +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs

Example

This file defines 2 GCP whose coordinates are specified in the WGS84 standard. The first one is observed in both 01.jpg and 02.jpg, while the second one is only observed in 01.jpg

WGS84
13.400740745 52.519134104 12.0792090446 2335.0 1416.7 01.jpg
13.400740745 52.519134104 12.0792090446 2639.1 938.0 02.jpg
13.400502446 52.519251158 16.7021233002 766.0 1133.1 01.jpg

Dataset Structure

project/
├── config.yaml
├── images/
├── masks/
├── gcp_list.txt
├── exif/
├── features/
├── matches/
├── tracks.csv
├── reconstruction.json
├── reconstruction.meshed.json
├── undistorted/
├── undistorted_tracks.json
├── undistorted_reconstruction.json
└── depthmaps/
 └── merged.ply

Geometric Models

TODO

Coordinate Systems

Normalized Image Coordinates

The 2d position of a point in images is stored in what we will call normalized image coordinates. The origin is in the middle of the image. The x coordinate grows to the right and y grows downwards. The larger dimension of the image is 1.

This means, for example, that all the pixels in an image with aspect ratio 4:3 will be contained in the intervals [-0.5, 0.5] and [3/4 * (-0.5), 3/4 * 0.5] for the X and Y axis respectively.

+-----------------------------+
| |
| |
| |
| + ------------->
| | (0, 0) | (0.5, 0)
| | |
| | |
+-----------------------------+
 |
 v
 (0, 0.5)

Normalized coordinates are independent of the resolution of the image and give better numerical stability for some multi-view geometry algorithms than pixel coordinates.

Pixel Coordinates

Many OpenCV functions that work with images use pixel coordinates. In that reference frame, the origin is at the center of the top-left pixel, x grow by one for every pixel to the right and y grows by one for every pixel downwards. The bottom-right pixel is therefore at (width - 1, height - 1).

The transformation from normalised image coordinates to pixel coordinates is

\[\begin{split}H = \begin{pmatrix}
 \max(w, h) & 0 & \frac{w-1}{2} \\
 0 & \max(w, h) & \frac{h-1}{2} \\
 0 & 0 & 1
 \end{pmatrix},\end{split}\]

and its inverse

\[\begin{split}H^{-1} = \begin{pmatrix}
 1 & 0 & -\frac{w-1}{2} \\
 0 & 1 & -\frac{h-1}{2} \\
 0 & 0 & \max(w, h)
 \end{pmatrix},\end{split}\]

where \(w\) and \(h\) being the width and height of the image.

World Coordinates

The position of the reconstructed 3D points is stored in world coordinates. In general, this is an arbitrary euclidean reference frame.

When GPS data is available, a topocentric reference frame is used for the world coordinates reference. This is a reference frame that with the origin somewhere near the ground, the X axis pointing to the east, the Y axis pointing to the north and the Z axis pointing to the zenith. The latitude, longitude, and altitude of the origin are stored in the reference_lla.json file.

When GPS data is not available, the reconstruction process makes its best to rotate the world reference frame so that the vertical direction is Z and the ground is near the z = 0 plane. It does so by assuming that the images are taken from similar altitudes and that the up vector of the images corresponds to the up vector of the world.

Camera Coordinates

The camera coordinate reference frame has the origin at the camera’s optical center, the X axis is pointing to the right of the camera the Y axis is pointing down and the Z axis is pointing to the front. A point in front of the camera has positive Z camera coordinate.

The pose of a camera is determined by the rotation and translation that converts world coordinates to camera coordinates.

Camera Models

TODO

Camera Coordinate System and Conventions

Camera

The pose of a camera, conceptually, consists of two things:

	Which direction does it face in, i.e. its local coordinate axes

	Where is it, i.e. the position of the camera origin

Local coordinate system of camera

These online docs say that, from the POV of a camera (a.k.a. a Shot
object):

	The z-axis points forward

	The y-axis points down

	The x-axis points to the right

I can confirm, after experimentation, that this is accurate. (In the
3D reconstruction viewer, the axes go Red, Green, Blue: x, y, z.)

[image: id-rotation]

The OpenSfM Pose class contains a rotation field, representing
the local coordinate system as an axis-angle vector.

	The direction of this 3D vector represents the axis around
which to rotate.

	The length of this vector is the angle to rotate around said
axis.

Sounds like it makes sense, but when it actually comes to working with
code, all the hidden conventions crawl out of the shadows.

First is the obviously unstated unit of angular measurement. In
computer maths libraries it’s generally safe to assume everything’s in
radians, and it certainly looks like that here.

Next, a “rotation axis” is really just a line. But a vector, even a
unit vector, defines a line \(\lambda\mathbf{v}\) with
orientation. One direction is “positive scalar”, the opposite is
“negative scalar”. Could there be a difference between rotating around
\(\mathbf{v}\) and rotating around \(-\mathbf{v}\)?

Look at a clock face-on. Pick the axis from its face to your face. It’s
rotating clockwise around this axis. Now turn the clock around to face
the opposite direction. Looking through the back of the clock, the hands
rotate anticlockwise around the negative of the original axis. So
rotating by \(\theta\) around \(-\mathbf{v}\) is the
same as rotating \(-\theta\) around \(\mathbf{v}\).

Even if we know that two representations are opposite, this still
doesn’t tell us which is which. What is a “rotation around the z-axis”?
This sounds like asking whether each axis is clockwise or anticlockwise,
but even this depends on which way you’re looking…

Instead, the real question being asked is: Does a rotation by a small
positive angle, around the positive z axis, rotate in the x-to-y
direction, or the y-to-x direction? And likewise for the other axes.

To find out, I set the rotation vectors to rotate 1 radian around each
of the axes. Results are:

“Rotate around Z” is Y-to-X

With pose.rotation = [0, 0, 1]:

[image: z-is-y-to-x]

“Rotate around Y” is X-to-Z

With pose.rotation = [0, 1, 0]:

[image: y-is-x-to-z]

“Rotate around X” is Z-to-Y

With pose.rotation = [1, 0, 0]:

[image: x-is-z-to-y]

It basically works like this (apologies for ASCII art):

 Z ----+
 / | |
 / | V
^ |_____Y
| / /
| / /
X <-----+

Where is the camera?

Conceptually, this is a simple translation, in world coordinates, to the
camera’s origin position.

OpenSfM, however, chooses not to store the “camera origin” in
Pose objects. Instead, it stores the camera coordinates of the
world origin in the translation field.

These obviously depend on the position and, in particular, rotation
of the camera. They are automatically calculated by the
pose.set_origin(origin) method, using the current
pose.rotation.

Because of this dependency, if the camera turns around, the
translation will need updating. But pose.set_rotation_matrix()
does not do this. So you should never call set_origin()
before set_rotation_matrix(). Only set the origin afterwards.

The case where you only want to change the rotation, while keeping the
position the same, is a bit subtle. You will have to manually update
pose.translation after setting the rotation, but to what? You can’t
call get_origin() after updating the rotation, because this will
calculate the origin from translation using the new rotation
instead of the old one. The translation value only makes sense the
coordinate system that set it. It must be kept in sync with
rotation, something that seems to have been overlooked in the version
at the time of writing.

Solution to safely set pose rotation:

org = pose.get_origin() # save where the camera actually is
pose.set_rotation_matrix(R) # set the rotation
pose.set_origin(org) # update the translation property accordingly...

Incremental reconstruction algorithm

OpenSfM implements an incremental structure from motion algorithm. This is reconstruction algorithm that starts building a reconstruction of a single image pair and then iteratively add the other images to the reconstruction one at a time.

The algorithm is implemented in the reconstruction.py module and the main entry point is the incremental_reconstruction() function.

The algorithm has three main steps:

	Find good initial pairs

	Bootstrap the reconstruction with two images

	Grow the reconstruction by adding images one at a time

If after step 3 there are images that have not yet been reconstructed, steps 2 and 3 are repeated to generate more reconstructions.

1. Finding good initial pairs

To compute the initial reconstruction using two images, there needs to be enough parallax between them. That is, the camera should have been displaced between the two shots, and the displacement needs to be large enough compared to the distance to the scene.

To compute whether there is enough parallax, we start by trying to fit a rotation only camera model to the two images. We only consider image pairs that have a significant portion of the correspondences that can not be explained by the rotation model. We compute the number of outliers of the model and accept it only if the portion of outliers is larger than 30%.

The accepted image pairs are sorted by the number of outliers of the rotation only model.

This step is done by the compute_image_pairs() function.

2. Boostraping the reconstruction

To bootstrap the reconstruction, we use the first image pair. If initialization fails we try with the next on the list. If the initialization works, we pass it to the next step to grow it with more images.

The reconstruction from two views can be done by two algorithms depending on the geometry of the scene. If the scene is flat, a plane-based initialization is used, if it is not flat, then the five-point algorithm is used. Since we do not know a priori if the scene is flat, both initializations are computed and the one that produces more points is retained (see the two_view_reconstruction_general() function).

If the pair gives enough inliers we initialize a reconstruction with the corresponding poses, triangulate the matches and bundle adjust it.

3. Growing the reconstruction

Given the initial reconstruction with two images, more images are added one by one starting with the one that sees more of the reconstructed points.

To add an image it needs first needs to be aligned to the reconstruction. This is done by finding the camera position that makes the reconstructed 3D points project to the corresponding position in the new image. The process is called resectioning and is done by the resect() function.

If resectioning works, the image is added to the reconstruction. After adding it, all features of the new image that are also seen in other reconstructed images are triangulated. If needed, the reconstruction is then bundle adjusted and eventually all features are re-triangulated. The parameters bundle_interval, bundle_new_points_ratio, retriangulation and retriangulation_ratio control when bundle and re-triangulation are needed.

Finally, if the GPS positions of the shots or Ground Control Points (GPS) are available, the reconstruction is rigidly moved to best align to those.

Splitting a large dataset into smaller submodels

Large datasets can be slow to process. An option to speed up the reconstruction process is to split them into smaller datasets. We will call each of the small datasets a submodel. Smaller datasets run faster because they involve fewer images on each bundle adjustment iteration. Additionally, the reconstruction of the different submodels can be done in parallel.

Since the reconstructions of the submodels are done independently, they will not be necessarily aligned with each other. Only the GPS positions of the images and the ground control points will determine the alignment. When the neighboring reconstructions share cameras or points, it is possible to enforce the alignment of common cameras and points between the different reconstructions.

In the following, we describe the commands that help to split a large dataset and aligning the resulting submodels.

Creating submodels

The command create_submodels splits a dataset into submodels. The splitting is done based on the GPS position of the images. Therefore, it is required to run extract_metadata before so that the GPS positions are read from the image metadata.

Additionally, the feature extraction and matching can also be done before creating the submodels. This makes it possible for each submodel to reuse the features and matches of the common images.

The process to split a dataset into submodels is then:

bin/opensfm extract_metadata path/to/dataset
bin/opensfm detect_features path/to/dataset
bin/opensfm match_features path/to/dataset
bin/opensfm create_submodels path/to/dataset

Submodels dataset structure

The submodels are created inside the submodels folder. Each submodel folder is a valid OpenSfM dataset. The images, EXIF metadata, features, and matches are shared with the global dataset by using symbolic links.

project/
├── images/
├── opensfm/
├── image_list.txt
├── image_list_with_gps.csv # list of original images with GPS position
├── exif
├── features # eventually
├── matches # eventually
└── submodels/
 ├── clusters_with_neighbors.geojson # geojson file with all images as features with corresponding submodel as a property
 ├── clusters_with_neighbors.npz
 ├── clusters.npz
 ├── image_list_with_gps.tsv
 ├── submodel_0000/
 │ ├── image_list.txt # images of submodel_0000
 │ ├── config.yaml # copy from global equivalent
 │ ├── images/ # link to global equivalent
 │ ├── exif/ # link to global equivalent
 │ ├── features/ # link to global equivalent
 │ ├── matches/ # link to global equivalent
 │ ├── camera_models.json # link to global equivalent
 │ └── reference_lla.json # link to global equivalent
 └── submodel_0001/
 └── ...

Config parameters

The creation of the submodels can be tuned by different parameters.

There are two parameters controlling the size and overlap of the submodels. The parameters need to be adjusted to the size.

	submodel_size
Average number of images per submodel. The splitting of the dataset is done by clustering image locations into groups. K-means clustering is used and k is set to be the number of images divided by submodel_size.

	submodel_overlap
Radius of the overlapping region between submodels in meters. To be able to align the different submodels, there needs to be some common images between the neighboring submodels. Any image that is closer to a cluster than submodel_overlap it is added to that cluster.

The folder structure of the submodels can also be controlled using the following parameters. You shouldn’t need to do change them.

	submodels_relpath
Relative path to the submodels directory. Cluster information will be stored in this directory.

	submodel_relpath_template
Template to generate the relative path to a submodel directory.

	submodel_images_relpath_template
Template to generate the relative path to a submodel images directory.

	submodel_use_symlinks
When true, global features and matches will be symlinked in each submodel so that they can be reused. When false, features and matches will need to be run for each submodel.

Providing the image groups

The create_submodels command clusters images into groups to decide the partition into submodels. If you already know how you want to split the dataset, you can provide that information and it will be used instead of the clustering algorithm.

The grouping can be provided by adding a file named image_groups.txt in the main dataset folder. The file should have one line per image. Each line should have two words: first the name of the image and second the name of the group it belongs to. For example:

01.jpg A
02.jpg A
03.jpg B
04.jpg B
05.jpg C

will create 3 submodels.

Starting from this groups, create_submodels will add to each submodel the images in the overlap area based on the submodels_overlap parameter.

Running the reconstruction for each submodel

Since each submodel is a valid OpenSfM dataset, the reconstruction can be run using the standard commands. Assuming features and matches have already been computed, we will need to run:

bin/opensfm create_tracks path/to/dataset/submodels/submodel_XXXX
bin/opensfm reconstruct path/to/dataset/submodels/submodel_XXXX

for each submodel. This can be run in parallel since the submodels are independent.

Aligning submodels

Once every submodel has a reconstruction, they can be aligned by using the command:

bin/opensfm align_submodels path/to/dataset

This command will load all the reconstructions, look for cameras and points shared between the reconstructions, and move each reconstruction rigidly in order best align the corresponding cameras and points.

Reporting

OpenSfM commands write reports on the work done. Reports are stored in the reports folder in json format so that they can be loaded by programatically. Here is the list of reports produced and the data included.

Feature detection

The report on feature detection is stored in the file features.json. Its structure is as follow:

{
 "wall_time": {{ total time compting features }},
 "image_reports": [# For each image
 {
 "wall_time": {{ feature extraction time }},
 "image": {{ image name }},
 "num_features": {{ number of features }}
 },
 ...
]
}

Matching

The report on matching is stored in the file matches.json. Its structure is as follow:

{
 "wall_time": {{ total time compting matches }},
 "pairs": {{ list of candidate image pairs }}
 "num_pairs": {{ number of candidate image pairs }},
 "num_pairs_distance": {{ number of pairs selected based on distance }},
 "num_pairs_time": {{ number of pairs selected based on time }},
 "num_pairs_order": {{ number of pairs selected based on order }},
}

Create tracks

The report on tracks creation is stored in the file tracks.json. Its structure is as follow:

{
 "wall_time": {{ total time computing tracks }}
 "wall_times": {
 "load_features": {{ time loading features }},
 "load_matches": {{ time loading matches }},
 "compute_tracks": {{ time computing tracks }},
 },
 "num_images": {{ number of images with tracks }},
 "num_tracks": {{ number of tracks }},
 "view_graph": {{ number of image tracks for each image pair }}
}

Reconstruction

The report on the reconstruction process is stored in the file reconstruction.json. Its structure is as follow:

{
 "wall_times": {
 "compute_reconstructions": {{ time computing the reconstruction }},
 "compute_image_pairs": {{ time computing the candidate initial pairs }},
 "load_tracks_graph": {{ time loading tracks }}
 },
 "num_candidate_image_pairs": {{ number of candidate image pairs for initializing reconstructions }},
 "reconstructions": [# For each reconstruction build
 {
 "bootstrap": { # Initialization information
 "memory_usage": {{ memory usage at the end of the process }},
 "image_pair": {{ initial image pair }},
 "common_tracks": {{ number of common tracks of the image pair }},
 "two_view_reconstruction": {
 "5_point_inliers": {{ number of inliers for the 5-point algorithm }},
 "plane_based_inliers": {{ number of inliers for the plane based initialization }},
 "method": {{ method used for initialization "5_point" or "plane_based" }}
 },
 "triangulated_points": {{ number of triangulated points }},
 "decision": {{ either "Success" or the reason for failure }},
 },
 "grow": { # Incremental growth information
 "steps": [# For every growth step
 {
 "image": {{ image name }},
 "resection": {
 "num_inliers": {{ number of inliers }},
 "num_common_points": {{ number of reconstructed points visible on the new image }}
 },
 "triangulated_points": {{ number of newly triangulated points }},
 "memory_usage": {{ memory usage after adding the image }},
 "bundle": {
 "wall_times": {
 "setup": {{ time setting up bundle }},
 "run": {{ time running bundle }},
 "teardown": {{ time updating the values after bundle }},
 },
 "brief_report": {{ Ceres brief report }}
 },
 }
]
 }
 }
],
 "not_reconstructed_images": {{ images that could not be reconstructed }},
}

Code Documentation

Dataset I/O

Reconstruction Types

Features

Matching

Incremental Reconstruction

Python 2 and 3 compatibility

The code must be compatible Python versions 2.7 and 3.6+.

Here are the basic rules to follow for all new code. Existing code needs to be revised to follow these rules. See the official guide [https://docs.python.org/3/howto/pyporting.html] for general rules.

Absolute imports

Always use absolute imports. Import absolute imports from future to disable relative imports.

from __future__ import absolute_import

Print

Use loggers instead of print when possible. When using print, use it as a function with parenthesis. Include print from future to disable Python 2 style print.

from __future__ import print_function

Division

Always add

from __future__ import division

to make sure that division acts the Python 3 way. Use // when you need integer division.

Text

All text should be Unicode. Encode Unicode text from and to bytes using UTF-8 encoding when doing I/O operations. Encoding and decoding is done as close as possible to the I/O operations. Some people refer to that as the Unicode sandwich [https://nedbatchelder.com/text/unipain/unipain.html#35].

By default, string literals are byte strings in Python 2 and Unicode strings in Python 3. Import Unicode literals from future to make all string literals Unicode in any Python version.

from __future__ import unicode_literals

When you really need a byte string literal create it with b"".

Use opensfm.io.open_rt and opensfm.io.open_wt to open text files for reading and writing. This functions take care of decoding and encoding UTF-8 files from and into Unicode.

Use opensfm.io.json_load, opensfm.io.json_loads, opensfm.io.json_dump, and opensfm.io.json_dumps to encode and decode JSON documents. This functions make sure that the JSON representation is Unicode text and that, when written in a file, it is written using UTF-8 encoding.

Index

Dense Matching Notes

Backprojection at a given depth

The backprojection of a pixel \(q = (q_x, q_y, 1)^T\) at depth \(d\) in camera coordinates is

\[X = d K^{-1} q\]

Backprojection to a plane

The backprojection of a pixel \(q = (q_x, q_y, 1)^T\) on to the plane \(\pi = (v^T, 1)\) is

\[X = \frac{-K^{-1} q}{v^T K^{-1} q}\]

and has depth

\[d = \frac{-1}{v^T K^{-1} q}\]

Plane given point and normal

The plane

\[\pi = \left(\frac{-n^T}{n^T X}, 1 \right)\]

Contains the point \(X\) and has normal \(n\)

Plane of constant depth

A plane of constant depth \(d\) is defined by \(z = d\) in camera coordinates.
So it has de following coordinates

\[\pi_c = (0, 0, -1 / d, 1)\]

Plane coordinates conversion

The coordinates of a plane in world and camera coordinates are related by

\[\begin{split}\pi_w = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \pi_c\end{split}\]

Plane-induced homography

Given a plane in camera coordinates \(\pi_c = (v^T 1)\) the homography from image 1 to image 2 is given by

\[H = K_2 [R_2 R_1^T + (R_2 R_1^T t_1 - t_2) v^T] K_1^{-1}\]

We can pre-compute

\[\begin{split}Q_{12} &= R_2 R_1^T \\
a_{12} &= R_2 R_1^T t_1 - t_2\end{split}\]

and then we have

\[H = K_2 [Q_{12} + a_{12} v^T] K_1^{-1}\]

Local, affine approximation of an homography

The homography mapping defined by matrix \(H\) is

\[\begin{split}f(x, y) = \begin{pmatrix} u / w \\
 v / w \end{pmatrix}\end{split}\]

where

\[\begin{split}u &= H_1 (x, y, 1)^T \\
v &= H_2 (x, y, 1)^T \\
w &= H_3 (x, y, 1)^T\end{split}\]

The differential is then

\[\begin{split}Df(x, y) = \frac{1}{w^2}
 \begin{pmatrix}
 H_{11} w - H_{31} u & H_{12} w - H_{32} u \\
 H_{21} w - H_{31} v & H_{22} w - H_{32} v
 \end{pmatrix}\end{split}\]

And the linear approximation around \((x_0, y_0)\) is

\[f(x_0 + dx, y_0 + dy) = f(x_0, y_0) + Df(x_0, y_0)(dx, dy)^T\]

Undistortion

The dense module assumes that images are taken with perspective projection and no radial distortion. For perspective images, undistorted versions can be generated by taking into account the computed distortion parameters, \(k1\) and \(k2\).

Equirectangular images (360 panoramas) however can not be unwarped into a single persepective view. We need to generate multiple perspective views to cover the field of view of a panorama.

This means that the undistortion process will create new views of the reconstruction. Thus the undistortion process is one where a reconstruction is taken as input and a new reconstruction is produced as output. The input may contain radially distorted images and panoramas and the output reconstruction will only have undistorted perspective images.

Also, because new views are generated, a new track graph is also generated.

Ground Control Points

When EXIF data contains GPS location, it is used by OpenSfM to georeference the reconstruction. Additionally, it is possible to use ground control points.

Ground control points (GCP) are landmarks visible on the images for which the geospatial position (latitude, longitude and altitude) is known. A single GCP can be observed in one or more images.

OpenSfM uses GCP in two steps of the reconstruction process: alignment and bundle adjustment. In the alignment step, points are used to globaly move the reconstruction so that the observed GCP align with their GPS position. Two or more observations for each GCP are required for it to be used during the aligment step.

In the bundle adjustment step, GCP observations are used as a constraint to refine the reconstruction. In this step, all ground control points are used. No minimum number of observation is required.

File format

GCPs can be specified by adding a text file named gcp_list.txt at the root folder of the dataset. The format of the file should be as follows.

	The first line should contain the name of the projection used for the geo coordinates.

	The following lines should con should contain the data for each ground control point observation. One per line and in the format:

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name>

Where <geo_x> <geo_y> <geo_z> are the geospatial coordinates of the GCP and <im_x> <im_y> are the pixel coordinates where the GCP is observed.

Supported projections

The geospatial coordinates can be specified in one the following formats.

	WGS84 [https://en.wikipedia.org/wiki/World_Geodetic_System]: This is the standard latitude, longitude coordinates used by most GPS devices. In this case, <geo_x> = longitude, <geo_y> = latitude and <geo_z> = altitude

	UTM [https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system]: UTM projections can be specified using a string projection string such as WGS84 UTM 32N, where 32 is the region and N is . In this case, <geo_x> = E, <geo_y> = N and <geo_z> = altitude

	proj4 [http://proj4.org/]: Any valid proj4 format string can be used. For example, for UTM 32N we can use +proj=utm +zone=32 +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs

Example

This file defines 2 GCP whose coordinates are specified in the WGS84 standard. The first one is observed in both 01.jpg and 02.jpg, while the second one is only observed in 01.jpg

WGS84
13.400740745 52.519134104 12.0792090446 2335.0 1416.7 01.jpg
13.400740745 52.519134104 12.0792090446 2639.1 938.0 02.jpg
13.400502446 52.519251158 16.7021233002 766.0 1133.1 01.jpg

Notes on Multiple Reconstructions Alignment

Merging

We have a set of reconstructions.

Let

\[\begin{split}H_a = \begin{pmatrix} s_a R_a & t_a \\ 0 & 1 \end{pmatrix}\end{split}\]

be the similarity transform that maps points in the global merged reference frame to the local reference frame of reconstruction \(a\).

Let

\[P_{ai} = (R_{ai}\ t_{ai})\]

be the projection matrix of camera \(i\) in the reconstruction \(a\). And let

\[P_i = (R_i\ t_i)\]

be the projection matrix of camera \(i\) in the global reference frame.

The relation between the local and global position of camera \(i\) is

\[P_i \propto P_{ai} H_a\]

and thus

\[\begin{split}s_a (R_i\ t_i) = (R_{ai}\ t_{ai}) \begin{pmatrix} s_a R_a & t_a \\ 0 & 1 \end{pmatrix}\end{split}\]

Solving for the observed values \(R_{ai}\) and \(t_{ai}\) gives

(1)\[\begin{split}R_{ai} &=& R_i R_a^t \\
t_{ai} &=& s_a t_i - R_i R_a^t t_a\end{split}\]

If we want to get the best absolute projections given the relative ones, we can minimize

\[\left\| \log(R_{ai} R_a R_i^t) \right\|^2_{\Sigma_{R_{ai}}} + \left\| t_{ai} - s_a t_i + R_i R_a^t t_a \right\|^2_{\Sigma_{t_{ai}}}\]

with respect to \(\{(R_a\ t_a)\}\).

Alternatively, we can work on the rotation and translation together and minimize

\[\left\| \left(\log(R_{ai} R_a R_i^t) ,\ t_{ai} - s_a t_i + R_i R_a^t t_a \right) \right\|^2_{\Sigma_{Rt_{ai}}}\]

Aligning camera centers instead of translations

Aligning the translation vectors as done above has the problem that when rotations are not aligned the cameras may end up in different positions even if the translations vectors are the same. An alternative approach that does not have such problem is to minimize the distance between the optical centers.

Let the optical center of camera \(i\) be

\[o_i = -R_i^t t_i\]

and the optical center of camera \(i\) in the reconstruction \(a\) be

\[o_{ai} = -R_{ai}^t t_{ai}\]

We want them to align after applying \(H_a\) so we have

\[s_a R_a o_i + t_a = o_{ai}\]

which we can enforce by minimizing

\[\left\| s_a R_a o_i + t_a - o_{ai} \right\|^2_{\Sigma_{o_{ai}}}\]

which it can be written in terms of Rs and ts as

\[\left\| R_{ai}^t t_{ai} - s_a R_a R_i^t t_i + t_a \right\|^2_{\Sigma_{o_{ai}}}\]

Camera position prior

The camera center of camera \(i\) is \(-R_i^t t_i\). If we want it to be close to the GPS position \(g_i\) we can minimize

\[\left\| g_i + R_i^t t_i \right\|^2_{\Sigma_{g_i}}\]

If camera \(i\) is not part of the optimization parameters we can add the same constraint in terms of \(H_a\)

\[\left\| g_i + (R_{ai} R_a)^t (R_{ai} t_a + t_{ai}) / s_a \right\|^2_{\Sigma_{g_i}}\]

Common point constraint

When a point is present in more than one reconstruction we want the multiple reconstructions of the point to align. There are several ways to do that. One is to add a constraint for every pair of reconstructions.

Let \(p_{ai}\) and \(p_{bi}\) be point \(i\) in reconstructions \(a\) and \(b\) respectively.

We want to align once mapped to the global reference frame. That is

\[s_a^{-1} R_a^t (p_{ai} - t_a) = s_b^{-1} R_b^t (p_{bi} - t_b)\]

So we can minimize the difference

\[\|s_a^{-1} R_a^t (p_{ai} - t_a) - s_b^{-1} R_b^t (p_{bi} - t_b)\|_{\Sigma_p}\]

Testing doc build

Only tests here for now.

test graphviz:

[image: digraph foo { "bar" -> "baz"; }]
test mathjax:

\[\int_{\partial \Omega}\omega=\int_\Omega \mathrm {d}\omega\]

test automodule:

 _static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_images/berlin_point_cloud.jpg

_images/berlin_viewer.jpg
‘Open Controls

otpg

_static/up.png

_images/graphviz-382add969ec16b0b33652d7a909a27f5990fd838.png

_images/id-rotation.png
0001.jpg

Open Controls

_images/x-is-z-to-y.png

nav.xhtml

 Table of Contents

 		
 OpenSfM

 		
 Building

 		
 Installing dependencies on Ubuntu

 		
 Installing dependencies on MacOSX

 		
 Note on OpenCV 3

 		
 Building the documentation

 		
 Using

 		
 Quickstart

 		
 Reconstruction Commands

 		
 extract_metadata

 		
 detect_features

 		
 match_features

 		
 create_tracks

 		
 reconstruct

 		
 mesh

 		
 undistort

 		
 compute_depthmaps

 		
 Configuration

 		
 Ground Control Points

 		
 File format

 		
 Supported projections

 		
 Example

 		
 Dataset Structure

 		
 Geometric Models

 		
 Coordinate Systems

 		
 Normalized Image Coordinates

 		
 Pixel Coordinates

 		
 World Coordinates

 		
 Camera Coordinates

 		
 Camera Models

 		
 Camera Coordinate System and Conventions

 		
 Camera

 		
 Local coordinate system of camera

 		
 Where is the camera?

 		
 Incremental reconstruction algorithm

 		
 1. Finding good initial pairs

 		
 2. Boostraping the reconstruction

 		
 3. Growing the reconstruction

 		
 Splitting a large dataset into smaller submodels

 		
 Creating submodels

 		
 Submodels dataset structure

 		
 Config parameters

 		
 Providing the image groups

 		
 Running the reconstruction for each submodel

 		
 Aligning submodels

 		
 Reporting

 		
 Feature detection

 		
 Matching

 		
 Create tracks

 		
 Reconstruction

 		
 Code Documentation

 		
 Dataset I/O

 		
 Reconstruction Types

 		
 Features

 		
 Matching

 		
 Incremental Reconstruction

 		
 Python 2 and 3 compatibility

 		
 Absolute imports

 		
 Print

 		
 Division

 		
 Text

_static/ajax-loader.gif

_images/y-is-x-to-z.png

_images/z-is-y-to-x.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

